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Abstract. We apply the finite lattice and cluster expansion methods to evaluate lhe numbers 
of qcoloudngs ~(0. q )  of the square and cubic lartices. In two dimensions, we develop an 
efficient Vansfer ma* algorithm to obtain the l / ( q  - I)-expansion of o(D = 2, q )  lo order 36. 
and in three dimensions we c n m c t  expansions about the long-range ordered states. We show 
(for D = 2) that it is also efficient lo use the formulae of the finite-lattice method substituting 
into them numerical values of the partition functions of finite lattices. Reliable estimates of o 
are obtained in all cases. 

1. Introduction 

This paper deals with the problem of counting the number of ways W to colour a map (sites 
of a lattice) into q colours subject to the constraint that no two neighbouring sites should 
be of the same colour, or, equivalently, evaluating the ground-state enhopy of the q-state 
antiferromagnetic (AF) Potts model laid on this lattice [ 11. We consider the square and cubic 
lattices, that is the 2D and 3D hypercubic lattices which split into two sublattices A and B .  If 
the lattice contains V + 00 sites, then W is of the form W = m” (if q > 2 then 1 < o < q). 
Lieb [Z] obtained the exact result w ( D  = 2, q = 3) = (4/3)3’2 = 1.539 60072.. . . Nagle 
[3] obtained the z l/(q - 1)-expansion of o ( D  = 2, q )  by diagrammatic techniques, 
and Kim and Enting [4] extended this series to zl* using the finitelattice method (EM). 
Mattis [5] proposed a transfer matrix statement of this problem which leads to the estimate 
for general q and D, 

(the diagrammatic meaning of this formula is that the summation is over the diagrams 
comprising disjoint unit hypercubes [6]). The Mattis formula is asymptotically exact at 
D , q  >> 1, the error at D = 2,q = 3 is 2.6%, and, as we will show, in the cases 
D = 2, q = 4 and D = 3, q = 3 ,4  it is 0.1%, 13.5%, and 7%. respectively. In additiod, 
for D = 3 we only know of the numerical studies of Chen and Pan [7]. 

We describe series expansions based, for D = 2, on the FLM (see [8-12]), which is 
probably the most efficient and completely automated method for generating series, and, for 
D = 3, on the cluster expansion method [13]. It is believed that the type of low-temperature 
ordering of the AF Potts model is different in two and tbree dimensions. The square lattice 
AP Potts model is disordered at T = 0 [14]; in this case we use the FLM with the free 
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Figure 1. Ordering of the cubic lattice AE Pons 
models: (a)  BSS for q = 3 and (b) AF for y = 4 
[IS]. 

boundary conditions (Bc) and z-expansion of m. We compute this series to order z36, thus 
adding 18 terms to the result of Kim and Enting [4]. The model laid on the cubic lattice 
has long-range order [15], see figure 1: the broken symmetry state (BSS) order for q = 3 
(colour 1 on A ,  and colours 2 and 3 on B) ,  and 'AF' order for q = 4 (1 and 2 on A ,  and 
3 and 4 on B). "be z-expansion gives poor results in this case, while the expansions about 
the BSS or the AP state yield good estimates of 0. This fact lends some additional support 
to the hypothesis about ordering of the ZD and 3D AF Potts models. We also propose to use 
the formulae of FLM as a finite-size extrapolation. or optimization. This approach seems to 
be very accurate, at least for D = 2. 

2 Finite lattice method 

Let W, be the number of colourings of a finik lattice g 

where i enumerates sites of g, (ij) is a pair of nearest neighbours, si is the colour of site 
i, si E {I, . . . , q] .  The colouring number of the squardcubic lattice is equal to the limit 

where V, and BB are the numbers of sites and bonds of g, respectively, and D = 2 or 3 .  

consisting of n layers of m sites. It is natural to introduce the quantities 
In the 2D case we use the FLM. Let Wm,n be the number of colourings of a rectangle 

which are polynomials in z, [4, 61. According to the FLM 

where +,,,," are to be found recursively from the relation 

and have the following asymptotic: 

%,,, = 1 + O ( Z " + ~ ~ - ~ ) .  
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Taking into account all the rectangles m + n < L + 2, we have 

where 
kt I 

uk = n @m,k+Z-m = 1 f o(zur-'). (9) 
n=l 

As usual, we compute Ws using a transfer matrix algorithm. We find it most efficient 
to develop a transfer matrix algorithm for Wm,n and then reduce it to W;,n using (4). If we 
compute W;,n by a transfer mairix algorithm for rectangles with up to mo sites in a layer, 
then in (8) we can put L = 2mo - 1. (Clearly, when m z mo and n < mo we use the 
symmetry Wm,n = W d .  

In section 4 we consider two lowest-order contributions to U k  (9), 

Uk = 1 + (YkZ2x-1  f p k Z z k  f o(Zwt'). (10) 
Thus, Wng in (10) k = 2m0, in (8) we can put L = 2mo and receive a z-expansion to 
order z4mo, 

To calculate the leading terms of Uk we use the connection between the cluster expansion 
and FLM 

where G(m, n )  is the set of clusters (connected diagrams) for which the minimum rectangle 
containing the cluster is m x n, and O(g) is defined recursively from the cluster expansion 
method 

W, = n 4(g')L(8'.g) (12) 
8 ' 9  

where L(g', g) is the number of subgraphs of g equivalent to g'. A cluster g with b bonds 
and 1 loops has the asymptotic 

a(g"l+(- l )bzb- '+'" .  (13) 
The sets of clusters contributing to the leading orders mk and pk are simple. We describe 
them in section 4. 

3. 2D transfer matrices 

We compute W,," (we choose m 6 n) by a transfer matrix algorithm, in which we add 
one site at each step, so that the rectangle is filled layer by layer and each layer is filled 
site by site from one edge to another. Suppose that we completely filled x - 1 layers, and 
y sites in layer x .  Consider m sites filled last and enumerate them by the index i equal 
to the ordinal number of a site in its layer (sites i = 1, , . . , y lie in layer x and the other 
sites i = y + 1 , .  . . , m  lie in layer x - 1; if y = m we deal with x filled layers). Let 
us denote a colouring (si]7=, of these sites by Vm,y .  Clearly,we only have to consider 
colourings such that si # sitl, i = 1 , .  . . , m - 1, i # y. Let Wm,x,y(Vm,,.) be the number 
of colourings of the filled part of rectangle with fixed Ym,?. Consider a permutation P of 
the set of colours { I , .  . . , 4). It transforms a colouring Vm.y into VL,) = PVm,y. We will 
s a y  that V and VLare equivalent, Ilr - V', if there exists a P such that \y' = PV. Clearly 
w m , x . y ( * m , y )  = Wm,x,yW&,y) if *m,y N *k,y. A colouring \um,y is said to be arranged if 
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new colours occur consecutively, sI = 1 and si < 1 + max s j ,  i = 2 , .  . . , m. Let us denote 
arranged colourings by q;,y. For an arbitrary colouring Ym,y there exists a unique arranged 
colouring Y;,y such that qm,y - q;,y. Let Wm,x,y('Pi,,) be the number of colourings of 
the filled part with Y;,y such that Ym,y - Y;,,. We have 

A V Bakaev and V I  Kabanovich 

lYCi 

- 
Wm,.r .y (Y; ,y )  = M(%,y )Wm.x .y (%,J  (14) 

where M(Y;,y) is the number of colourings Ym,y equivalent to 

To begin the transfer matrix algorithm, we fill the first layer 

W m , ~ , m ( q ; + )  = MW;,m) (16) 

Wm,n = Wm,n,m(*; ,m) ,  (17) 

and after filling the rectangle completely we sum over arranged colourings 

*L 
Let Nm,y be the number of arranged colourings To compute them, firstly we note, 

by considering for y < m, the two caSes sy # sY+l and sy = sY+1 that 

Nm,y = N,,,,,,, + "-],,,,-I 
To compute Nm,m we use the recurrence 

N"(m', k )  = (k - l)N"(m' - 1, k )  + N"(m' - 1.k t 1) 
N,,,,,,, = N(m - 1 , l )  

where E(m', k) is the number of arranged colEurings of the chain such that colours at first 
m - m' sites are fixed, and k = si (N(m', k )  depend on m only through k). The 

numbers N"(m',k) allow to define the ordinal number of an arranged colouring ~ ( q ; , ~ ) .  
For y = m we put 

y = 1,. . . , m - 1 .  (18) 

N"(0, k )  = 1 k = 1,2, ... 
m'. k = 1.2,. . . (19) - 

max 
IQ<m-m' 

where 

and for y < m 

The N's we will need in this study are listed in table 1. 
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Table 1. 

m I 2 3 4  5 6 7 8 9  10 

",,7 I 1 2 5 15 52 203 877 4140 21147 
N,,, ,Y c m  - 2 3 7 20 67 255 1080 5017 25287 

Now we will introduce the transfer matrices Tm,y so that 

The hansfer matrix element Tm.y(Yk,y, Yk.y-!) (or Tm,~(Yi.l, Y;,J if y = 1) is equal 
to the number of ways to transform a colounng Y;,y-l ( Y i J  into Y;,? by means of 
substituting an arbitrary colour (from { I ,  . . . , q } )  for sy and reducing the obtained colourings 
to arranged ones. By construction, every non-vanishing element of a transfer matrix Tm,y 
corresponds uniquely to an arranged colouring W i + l , m + l ,  and we can define sets of non- 
vanishing elements of hansfer matrices as follows. 

Let \vi+,,m+l = ( s ~ ] ~ ~ ~ .  Eliminating site y we obtain a colouring {s:]El such that 
si = si for i -= y and s: = si+, for i z y. The colouring equivalent to it will be some 
* i , y - l  (Y;,m if y = I) ,  which we denote by Y ~ , y - l ( Y ~ + l , m + f ) .  (Observe that the function 
'J",0('i+i,m+,i ) takes on values in the set of colourings (IY&J but it does not coincide 
with the functlon Y;,m(Y;+l,m+l) taking on values in the same set.) Now we can list all 
the non-vanishing transfer matrix elements by the formulae 

T m , y W i , y ( Y i + i . m + i ) v  % , y - l W i + i , m + * ) )  h A ' % + i , m + i )  y = l .  . . . ,  m (25) 

where 
q +  1 - max si sy #si for all j # y  

lCi(m+l 

otherwise 
fm&'i+i.m+i) = 

takes into account that there are q - k equivalent ways to add a new colour to a colouring 
involving k colours. 

Finally, to compute directly W& which are polynomials in z we define 

where Vm,r,y = mx - m + y .  Bm,r,y = 2mx - 3m - x + 2y. For the first filled layer, from 
(16) we get 

We obtain a transfer matrix algorithm by substituting W&y and T;,, for Wm,x,y and TmVy 
in (17) and (24). where 

~ j . 1  Z T , , ~  6 . y  = (Z +z2)Tm.y y = 2, .. . ,m.  (29) 
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4. 2D diagrams contributing to two lowest orders of vk 

Using (13) to select clusters contributing to the lowest orders of U k ,  we find that the 
first contribution ak equals the number of convex polygons of length 2k which satisfy 
the following rule (we will call them Ck-contours): 

if two nearest neighbours on the square lattice i and j belong to a polygon then the 
bond connecting them also belongs to this polygon. 

Guttmann and Enting [ 111 evaluated the exact generating function of convex polygons; 
we found that subject to this constraint it takes the form 

A V Bakaev and V I  Kabanovich 

The second contribution to U,. &, can be calculated as follows. Consider a Ck-contour. 
Find a site within the domain bounded by ck which has p > 1 nearest neighbours belonging 
to ck. The cluster obtained by adding this site to Ck and all bonds connecting it with its 
nearest neighbours on C, contribute p - 1 to P k .  Let p ( c k ;  p )  be the number of sites within 
the domain bounded by C, which have p nearest neighbours belonging to 4. Then 

We constructed a transfer mahix to compute P k .  Its dimensionality increases only as k3.  
We list several us: 

u18= 1 + 3 5 6 9 2 3 9 6 8 ~ ~ ~ + 4 2 8 1 8 1 9 5 5 4 ~ ~ ~  + O ( Z ' ~ )  

u19 = 1 + 1520 962 9 5 6 ~ ~ '  + 18 999 367 4 2 0 ~ ~ '  + O ( Z ~ ~ )  

u20 = 1 + 6462 603 8 9 8 ~ ~ '  + 83 924 203 2 0 4 ~ ~  + O(z4') . (32) 

5. Results for the square lattice 

We calculated all the W;," with m + n < 19 by the transfer matrix algorithm described in 
section 3, and found from (5) and (9) all the uks with k < 17. This computation required 
5 Mb CPU memory and 3 minutes CPU time on a IBM PC AT 386 with the Intel 80860 
microprocessor (1.6 of the total 5 Mb were used to store the functions 9h,J*;+l,m+l) and 
tm,y('Y~+,,m+,) only to expedite computations). Then we used two lowest-order terms for 
U]', (32). and finally obtained 

(4 - 1)2 w ( D  = 2, q )  = -(1 + z3 + z7 + 32' + 4z9 + 32" + 32" + 112" + + 8214 
4 

-912" - 2 6 1 ~ ' ~  - 2 9 0 ~ ' ~  + 2542" + 1 6 7 1 ~ ' ~  + 31272" + 7862" 
- 13 9 3 9 ~ ' ~  - 49 052zu - 80 2762" + 21 4 5 0 ~ ~  + 515 8 4 6 ~ ' ~  
+1411 017zn + 1 1 6 0 7 6 1 ~ ~  -47937642" - 2 0 3 4 0 5 8 6 ~ ~ ~  
-29 699 3 6 0 ~ ~ '  + 33 165 9 1 4 ~ ~ '  + 256 169 4 3 3 ~ ~ ~  + 495 347 9422% 
- 1 2 7 7 3 6 2 9 6 ~ ~ ~  - 3068 121 0 6 6 ~ ~ ~  + O(z3')). (33) 

Clearly, higher-order coefficients display some regularity. Therefore, for q = 3 we 
factor out several first terms and Pade-approximate the remainder, see table 2. In table 3 
we list typical q = 3 partition functions for rectangles with free BC. They may be counted 



Series expansions for the q-colour probIem 6737 

Table 2. 

[%,SI [25,11] [26,10] 
1.53990 1.53973 1.53969 

Table 3. 

m x n  2 x 2  3 x 3  4 x 4  5 x 5  6 x 6  7 x 7  7 x 8  

W , , [ q = 3 ]  18 246 7812 580986 101596896 41869995708 1053631 126386 
o,.[q = 31 2.06 1.84 1.75 1.70 1.6688 1.6473 1.6394 

Table 4. 

L 13 14 15 16 17 

OL 1.5329151 1.533 9998 1.534 8392 1.535 5031 1.5360371 
0'' 1.539569 1.539614 1.539599 1.539602 1.539601 

even on an IBM PC by the method of section 3. or, more easily, by constructing allowed 
impositions of properly coloured straight-line segments. These numerical estimates of o 
improve dramatically if we do 'Enting's optimization', that is substitute the exact numerical 
values of W ' s  into (4), (5) and (6) (table 4). It is also useful to note that the sequence WL 

seems to have the asymptotic limit W L  = w(2,3) + C/Lz, so the sequence 

3 (ow - W L ) ( W L  - W L - Z )  

@L+2 - 2 0 L  + WL-2) 
WIL = W L  - - 

2 

converges to w(2,3) not worse than as L-3. Finally, we obtain the estimate 
w ( D  = 2, q = 3) = 1.539601 % 0.000001 . 

For q = 4 the Pade-approximants converge very rapidly, and we have the estimate 
o ( D = 2 , q  =4)  =2.336056641rt0.000000001. 

(34) 

6. BSS and AF expansions for the cubic lattice 

For D = 3 and small q we found that the z-expansion does not give good results, so we 
used another method. Let us introduce a parameter x so that when x = 0 we obtain the 
pure BSS and AF order for odd and even q. respectively: 

(35) U ' ( L ; q , x )  =En.@, nxflz  n (1 -6( si-sj)) 
( s i l i E A  i E B  ( i j W  

where 

and [q /2 ]  is for the integer part of q/2 ,  
As usual, we define the limit 

w(D.q,x)= lim ( W ( G q , x ) ) " "  
v-ru 

B,"-.D 

(37) 
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Clearly, w(D,q) = w ( D , q ,  1). A simple duality relation holds: w(D,q,x) = 
xw(D, q,  Vx). 

A V Bakaev and V I  Kabanovich 

The zero-order term of this x-expansion is 

and that of the z-expansion equals (q - I ) D / q D - i .  Since both of them are lower bounds 
for w(D,q). we suppose, roughly, that the xexpansion yields better results if 

D = 3,  q = 3 and 4 satisfy this inequality, and for q 

BC. For a finite lattice g we define 

5 it is not valid. 
We shall use the method of cluster expansion. To apply it, we impose the appropriate 

where g' is a finite lattice obtained by adding to g all sites i E I: which have nearest 
neighbours belonging tog, vA(s ' \g )  and vB(g'\g) are the number of added sites belonging 
to A and B ,  respectively, q A  = [q /2 ]  and q B  = q - q A ,  and we impose the following 
restriction on the BC spins: si = 1, . . . , qn if i E A n (g' \ g) and si = 9.4 + 1, . . . , q if 
i E E n (g' \ g). If g are cuboids, a unique nearest neighbour in g corresponds to each 
i E gl\ g. Then we can eliminate the summation over si with i E g' \ g, 

where ni is the number of nearest neighbours of i which do not belong to g. For q = 3 
(qA = 1) we make the convention that ( ( ( q A  - 1)/qA)"'x)@' equals xfi if ni = 0. equals 1 
if pi = 0, and 0 if ,9i > 0 and ni > 0. 

A finite lattice g is to be taken into account (is a cluster) if it becomes a connected 
graph after drawing all the bonds between nearest neighbours and next nearest neighbours 
on the hypercubic lattice. 

For q = 3,  we obtained 

o ( D = 3 , q = 3 , ~ ) = &  

+330260(G)6  +O(X")~". (42) 

Pade-approximating this expansion we get 
w ( D = 3 , q = 3 ) =  1.4435i0.0005. 

In this case we have a problem: whether the singularity xg of the x-expansion about 
x = 0 lying on the real axis is located exactly at xg = 1, or at xo > 1. If xg > 1, then 
the stable solution for all x > 1 is given by the expansion about I /x  = 0 determined from 
the duality relation, and in the interval x E [l,xg) the expansion about x = 0 describes 
metastable states. 

We performed Monte Carlo simulations on the lattice 20 x 20 x 20 with PBC, starting 
from the pure BSS for x = 0. We found that at x = 1.1, 1.05.1.04, 1.035, and 1.03 the 
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system goes to the neighbourhood of the BSS for l/x = 0 after 200, 400, 1000, 4000, and 
> 10000 MCS, respectively. These results suggest 1 < xo < 1.03. 

For q = 4 we obtained 

w ( D  = 3, q = 4) = 2.043 k 0.001 

The 3D series can be extended using the FLM. Here we only note that the optimal set 
Gf in this case are not cuboids but all the convex polyhedrons which can be drawn on the 
cubic lattice (on the suhlattice A if q = 3) using bonds between sites which are nearest and 
next nearest neighbours on the cubic lattice. 
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